
An Analysis of the Dynamic Behavior of
JavaScript Programs
~ GREGOR RICHARDS, SYLVAIN LEBRESNE, BRIAN BURG

AND JAN VITEK

Who, where and when?
* Richards is currently an Assistant Professor at the University of Waterloo

Research interests: Dynamically and gradually-typed languages, VM design

* Lebresne is still a Post-doc at Purdue University

Ph. D in 2008 from Paris University.

Research interest: Type Exception from a theoretical view point.

* Brian Burg is at Applie’s WebKit team.

Ph. D from University of Washington.

Research interests: Debugging tools

* Jan Vitek is a Professor at Northeastern. Co-founder of the Secure Software Systems (S3) Lab.

What is this paper about?

…. But why?
• Because researchers have not properly
analyzed large JavaScript programs in the wild.

• Because JavaScript is too flexible and too
many dynamic features to be completely
studied.

• Paper aims to prove or disprove the many
common assumptions of JavaScript programs.

•Inspired by Dufour et al.’s work on run-time
metrics for Java.

JavaScript: Craziness and then some!
o Uses a prototype based inheritance system rather than a simple Object-oriented inheritance
systems.

o An objects is just simply a collection of properties.

o Even a method is just a ‘property’!!!

o Any function can be a constructor

o The most infamous of the JavaScript quirks: eval and variadicity

eval == evil???
• eval is a string representation of JavaScript expression, statement or a sequence of statements.

• It is a property of JavaScript’s global object.

• eval is commonly used to construct JSON objects from strings

SOURCE: Mozilla Developer Network

Variadicity … yes that’s a thing!
• Functions need not be called with the same number of arguments or type as it signature.

• Different from Object-oriented polymorphism.

• Functions may be variadic without being declared so

• They can have any degree of variadicity

• Many built-in functions are variadic.

• A function can even be called from any context using the call method.

JavaScript: Assumptions
The common assumptions about JavaScript programs in research and in implementations:

• Object protocol dynamism

• Properties are rarely deleted

• eval is infrequently used

• Low Call-site dynamism

More assumptions
• Invariance of prototype hierarchy

• Declared function signatures are indicative of types

• Program sizes are modest

• Running time is dominated by ‘hot spots’

Quis custodiet ipsos custodes?
* What if the JavaScript benchmarks themselves are not representative of its usage in the real-
world?

* What if the kind of operations they perform on JavaScript programs is not really the usual kind
of computations that is run on JavaScript?

* What if all that we know about JavaScript is one big, fat lie???

Dealing with the Devil
* Evaluation done using an instrumented version of the WebKit engine

* Records a trace of all the operations by the interpreter

* Even eval is traceable.

* These traces are collected and stored in a database from where it is later analyzed/mined.

* The offline ‘replays’ the state to replicate the heap state

* Static analyses are performed on the recovered files.

Measuring the sizes

Function sizes

Instruction Mix

Object Kinds

Call-site polymorphism

Variadicity

The nature of evil

Object Protocol Dynamism

Constructor Polymorphism

Benchmarks: Allocated Objects

Benchmarks: Object timelines

… and the results are:
The authors conclude that most of the assumptions about production JavaScript programs are:

FALSE
In particular:

• Properties are added only at object initialization: BUSTED

• Properties are rarely deleted: BUSTED (but I think is PLAUSIBLE)

• Use of eval is infrequent: BUSTED

• Program sizes are modest: BUSTED

Results (continued)
• Prototype hierarchy is invariant: BUSTED (but I think is PLAUSIBLE)

• Call-site dynamism is low: BUSTED (but I think is PLAUSIBLE)

• Declared function signatures are indicative of types: BUSTED

• Execution time is dominated by hot loops: CONFIRMED

The Violators

	An Analysis of the Dynamic Behavior of JavaScript Programs
	Who, where and when?
	What is this paper about?
	 …. But why?
	JavaScript: Craziness and then some!
	eval == evil???
	Variadicity … yes that’s a thing!
	JavaScript: Assumptions
	More assumptions
	Quis custodiet ipsos custodes?
	Dealing with the Devil
	Measuring the sizes
	Function sizes
	Instruction Mix
	Object Kinds
	Call-site polymorphism
	Variadicity
	The nature of evil
	Object Protocol Dynamism
	Constructor Polymorphism
	Benchmarks: Allocated Objects
	Benchmarks: Object timelines
	… and the results are:
	 Results (continued)
	The Violators
	Slide Number 26

