An Analysis of the Dynamic Behavior of
JavaScript Programs

~ GREGOR RICHARDS, SYLVAIN LEBRESNE, BRIAN BURG
AND JAN VITEK

Who, where and when?

* Richards is currently an Assistant Professor at the University of Waterloo

Research interests: Dynamically and gradually-typed languages, VM design
* Lebresne is still a Post-doc at Purdue University

Ph. D in 2008 from Paris University.

Research interest: Type Exception from a theoretical view point.
* Brian Burg is at Applie’s WebKit team.

Ph. D from University of Washington.

Research interests: Debugging tools

* Jan Vitek is a Professor at Northeastern. Co-founder of the Secure Software Systems (S3) Lab.

What is this paper about?

sJlscovery

MY THBUSTERS

-

... But why?

* Because researchers have not properly
analyzed large JavaScript programs in the wild.

* Because JavaScript is too flexible and too
many dynamic features to be completely
studied.

* Paper aims to prove or disprove the many
common assumptions of JavaScript programs.

°Inspired by Dufour et al.s work on run-time
metrics for Java.

JavaScript: Craziness and then some!

0 Uses a prototype based inheritance system rather than a simple Object-oriented inheritance
systems.

0 An objects is just simply a collection of properties.
O Even a method is just a ‘property’!!!

0 Any function can be a constructor

0 The most infamous of the JavaScript quirks: eval and variadicity

eval == evi|???

* eval is a string representation of JavaScript expression, statement or a sequence of statements.

* It is a property of JavaScript’s global object.

1 eval(new String("2 + 2")); // returns a String object containing "2 + 2"
2 eval({"2 = 2"); /{ returns 4

* eval is commonly used to construct JSON objects from strings

SOURCE: Mozilla Developer Network

Variadicity ... yes that’s a thing!

* Functions need not be called with the same number of arguments or type as it signature.

e Different from Object-oriented polymorphism.

* Functions may be variadic without being declared so
* They can have any degree of variadicity

* Many built-in functions are variadic.

A function can even be called from any context using the call method.

JavaScript: Assumptions

The common assumptions about JavaScript programs in research and in implementations:

* Object protocol dynamism
* Properties are rarely deleted
* eval is infrequently used

* Low Call-site dynamism

More assumptions

* Invariance of prototype hierarchy

* Declared function signatures are indicative of types
* Program sizes are modest

* Running time is dominated by ‘hot spots’

Quis custodiet ipsos custodes?

* What if the JavaScript benchmarks themselves are not representative of its usage in the real-
world?

* What if the kind of operations they perform on JavaScript programs is not really the usual kind
of computations that is run on JavaScript?

* What if all that we know about JavaScript is one big, fat lie???

Dealing with the Devil

* Evaluation done using an instrumented version of theWebKit engine

* Records a trace of all the operations by the interpreter

* Even eval is traceable.

* These traces are collected and stored in a database from where it is later analyzed/mined.
* The offline ‘replays’ the state to replicate the heap state

* Static analyses are performed on the recovered files.

Measuring the sizes

Unique
Site Source | source Trace | Func. Hot | Live
size size size | count

280s 116 KB| 81KB| 11,931 K| 4,293 6.8%| 44%
BING 815KB| 186KB| 1,199K| 2457 6.4%| 46%
BLOG | 1,347 KB| 775KB 91 K| 5,087 11.5%| 16%
DIGG | 1,106 KB| 759KB| 1,734 K| 20957 8.7%| 39%
EBAY | 3,156 KB|1,034KB| 2,239 K| 10,791| 11.7%| 31%
FBOK |14,904 KB|[1,604KB| 5,309 K| 43,469 5.8%| 19%
FLKR | 8,862 KB| 246KB 490 K| 19,149| 14.0%| 13%
GMAP| 1,736 KB| 833KB| 13,125 K| 5.146| 7.8%| 61%
GMIL | 2,084 KB|1,719KB| 6,047 K| 10,761 7.6%| 38%
GOGL | 2,376 KB| 839KB| 1,815K| 10,250 15.0%| 28%
ISHK 915 KB| 420KB| 5,376 K| 2862 0.6%| 35%
LIVE | 1,081 KB| 938KB| 48,324 K| 2936| 7.4%| 49%
MECM| 4,615 KB| 646KB| 14,084 K| 14,401| 6.6%| 24%
TWIT 837KB| 160KB| 2252K| 2967 9.2%| 45%
WIKI | 1,009 KB| 115KB 53 K| 1,226| 14.6%| 24%
WORD| 1,386 KB| 235KB| 6403K| 3,118 1.0%| 42%
YTUB | 2,897 KB| 562KB 541 K| 11,321 13.0%| 22%
ALL | 2,544KB| 790KB| 4,151 K| 10,625 2.2%| 26%

Figure 2. Program sizes. “Source size” is the total amount of
source seen by the interpreter, including source loaded more than
once and evals. “Unique source size” excludes multiple loads of
the same source, but still includes eval.

ION sizes

Funct

™o - r----- -
S DS S B)
u il
e be---c--- T
N
an - v-----[H
S S o s 1
1009 [
w.___.___o T\:\\\W\H_”‘
T S SRb 1 1A
i m b---[h
o R SRS Sy S
AvE3 F---<[}
090 | R R e -+
oom m |
ous_ oo
Sz m_ T
r _ I I ! | _ I I ! I
008 02L or9 095 o8y [0} 4 oce [44 091 08 0
v becieecioeioo -
T S it Sahh Rttt I N I BN R
EBlM= < = = =S === devoimn : B |- --4:
i ERER LR EEE | IS B o
Woaw R L EEET R -
o e S v
R R Rl NS N 0 ST
1000 Foi--- S e ML IR Rt
= mm g
oo S s il o s
O S B DS O s s S8
I e S i R2
I kbl IR BN T
I i b sk EEEE El NS S Bl RO
R e T NN B B
ww b W
_. _ 1 1 1 _ | | | _ |
00e 08l 091 4% 0zL 001 08 09 or 0z 0

Figure 3. Static function size. The per-site quartiles and median
static function size, measured by the number of AST nodes gener-

ated from parsing the function.

Figure 4. Dynamic function size. The per-site quartiles and me-
dian function size, measured in the number of trace events.

Instruction Mix

= Write_prop Read_prop m Delet_prop Define Throw
= Write_hash Read_hash m Delet_hash Create m Catch
= Write_indx Read indx m Delet_indx m Call

2808
BING
BLOG
DIGG
EBAY
FBOK
FLKR
GMIL
GMAP
GOGL
ISHK
LIVE
MECM
TWIT
WIKI

worp |
YTUB
ALL*

Figure 5. Instruction mix. The per-site proportion of read, write,
delete, call instructions (averaged over multiple traces).

Object Kinds

B anonymous O arrays O regexps ®m instances O prototypes
m dom m dates O functions B errors

Figure 7. Kinds of allocated objects. The per-site proportion of
runtime object kinds (averaged over multiple traces).

W
=
-l

2808
BING
BLOG
DIGG

:

GMAP
GMIL
ISHK

:

MECM
WIKI
WORD
YTUB
ALL*

Call-site polymorphism

Callsites with N function bodies
Site 1] 2] 3] 4] >5| Max
280s 99.9% 00% | 0.0% | 0.0% | 0.0% | 1437
BING 93.6% 48% | 1.0% | 0.3% | 0.3% 274
BLOG | 95.4% 34% | 0.5% | 0.2% | 0.5% 95
DIGG 95.4% 32% | 04% | 03% | 0.7% 44
EBAY 91.5% 7.1% | 0.5% | 0.5% | 0.5% 143
FBOK | 76.3% | 148% | 3.7% | 1.7% | 3.5% 982
FLKR 81.9% | 13.2% | 3.6% | 0.5% | 0.8% 244
GMAP | 98.2% 08% | 04% | 0.2% | 0.4% 345
GMIL 98.4% 1.2% | 0.2% | 0.1% | 0.2% 800
GOGL | 93.1% 55% | 0.6% | 0.3% | 0.6% | 1,042
ISHK 90.2% 8.1% | 1.0% | 0.0% | 0.8% 42
LIVE 97.0% 1.7% | 0.5% | 0.3% | 0.5% 115
MECM | 94.2% 41% | 1.2% | 0.2% | 0.4% 106
TWIT 89.5% 72% | 1.7% | 0.3% | 1.3% 60
WIKI 87.9% 6.7% | 1.9% | 0.2% | 3.2% 32
WORD | 86.8% 79% | 27% | 1.9% | 0.6% 106
YTUB 83.6% | 10.6% | 54% | 0.1% | 0.4% 183

| Al [812% | 12.1% | 3.0% | 1.2% | 2.5% | 1,437 |

Figure 9. Call site polymorphism. Number of different function
bodies invoked from a particular callsite (averaged over multiple
traces).

Variadicity

Functions with N distinct arities
Site 1 \ 2 \ 3 | 4 \ >5 | Max
280s 99.3% | 0.6% | 0.0% | 0.1% | 0.1% 9
BING 942% | 49% | 0.7% | 0.2% | 0.0% 4
BLOG | 97.1% | 2.3% | 0.4% | 0.2% | 0.0% 4
DIGG 92.5% | 6.3% | 0.9% | 0.3% | 0.1% 5
EBAY 959% | 3.6% | 0.3% | 0.0% | 0.3% 9
FBOK | 939% | 48% | 0.6% | 0.6% | 0.1% 6
FLKR 942% | 4.6% | 09% | 0.3% | 0.0% 4
GMAP | 934% | 55% | 0.6% | 0.3% | 0.2% 6
GMIL 95.3% | 3.8% | 0.6% | 0.2% | 0.2% 30
GOGL | 94.6% | 43% | 0.7% | 0.2% | 0.2% 9
ISHK 97.6% | 2.3% | 0.1% | 0.0% | 0.0% 3
LIVE 92.7% | 6.1% | 0.8% | 0.3% | 0.1% 7
MECM | 919% | 6.5% | 0.6% | 0.5% | 0.5% 7
TWIT 909% | 74% | 1.3% | 0.5% | 0.0% 4
WIKI 96.7% | 3.3% | 0.0% | 0.0% | 0.0% 2
WORD | 92.6% | 6.6% | 0.6% | 0.2% | 0.0% 4
YTUB | 98.5% | 1.4% | 0.1% | 0.0% | 0.0% 4
All 93.5% | 48% | 0.7% | 0.4% | 0.6% 30

Figure 10. Function variadicity. Proportion of functions used
variadically.

0G
FBOK
EBAY
LIVE
MECM
DIGG
BING
GOGL
FLKR
GMIL
GMAP
280S
WORD
TWIT
YTUB
ISHK

400
|

O JSON
O ftrivial
B arbitrary code

B
o
s | Lol .
(&Y}
o _

100
I

Figure 11. Uses of eval. Count of the invocations of eval (aver-
aged over multiple traces). Sites sorted by total number of invoca-
tions, descending.

Object Protocol Dynamism

1.0 4
" | o Dead
O Read
0.8 | @ Update |
B Add
| m Delete |

T T T v

"| o Dead
O Read
| B Update |
B Add
| m Delete |

Figure 13. Object timelines. Above, TWIT. Below, GOGL. The
dashed line indicates the end of object construction.

Constructor Polymorphism

10000
|

- -
4
§] . e *
.*
A U
=2 _| -
=
- -
- -
- - -
. . o
- L e d e L -
— .o ‘re 4B Mo b -
1 | 1 | 1 I 1 |
1 2 5 10 20 50 100 200

Figure 15. Constructor polymorphism. Plots the number of dis-
tinct sets of properties (x-axis) against the number of constructor
functions observed to create objects with that many distinct sets of
properties (y-axis). (Log scale)

Benchmarks: Allocated Objects

B anonymous O arrays O regexps B instances O prototypes

B dom B dates O functions B ermors
e | =
sovs [[|
DROM | | 11

Figure 17. Kinds of allocated objects.

Benchmarks: Object timelines

1.0 —

| o Dead
O Read
'| @ Update | "
B Add
| @ Delete |-

‘| o Dead
O Read
‘| @ Update |
® Add
| @ Delete |-

Figure 18. Object timelines. SUNS (above) and VEBM (below).
The dashed line indicates the end of object construction.

... and the results are:

The authors conclude that most of the assumptions about production JavaScript programs are:

FALSE

In particular:
* Properties are added only at object initialization: BUSTED
* Properties are rarely deleted: BUSTED (but | think is PLAUSIBLE)
* Use of eval is infrequent: BUSTED

* Program sizes are modest: BUSTED

Results (continued)

Prototype hierarchy is invariant: BUSTED (but | think is PLAUSIBLE)

Call-site dynamism is low: BUSTED (but | think is PLAUSIBLE)

Declared function signatures are indicative of types: BUSTED

Execution time is dominated by hot loops: CONFIRMED

The Violators

810

N
w
e
n
o
~]

1
280s X
BING
BLOG
DIGG
EBAY
FBOK
FLKR
GMAP
GMIL
GOGL
ISHK
LIVE
MECM
TWIT
WIKI
WORD X
YTUB X | X X

| P4

R |

e
P

| <
>

| e

>

| P e | <
bl oo I e e s
bl o B P o S I e e e e

X

o I ol e e Pl I o B | I
b I o oo o B Il B o oo e B I B e

olEeilalle

X

Figure 19. Violations. For each assumption (above), a subjective
opinion of which sites (left) violate that assumption. Anla

	An Analysis of the Dynamic Behavior of JavaScript Programs
	Who, where and when?
	What is this paper about?
	 …. But why?
	JavaScript: Craziness and then some!
	eval == evil???
	Variadicity … yes that’s a thing!
	JavaScript: Assumptions
	More assumptions
	Quis custodiet ipsos custodes?
	Dealing with the Devil
	Measuring the sizes
	Function sizes
	Instruction Mix
	Object Kinds
	Call-site polymorphism
	Variadicity
	The nature of evil
	Object Protocol Dynamism
	Constructor Polymorphism
	Benchmarks: Allocated Objects
	Benchmarks: Object timelines
	… and the results are:
	 Results (continued)
	The Violators
	Slide Number 26

